Zero products of Toeplitz operators on Reinhardt domains

نویسندگان

چکیده

Let $\Omega$ be a bounded Reinhardt domain in $\mathbb{C}^n$ and $\phi_1,\ldots,\phi_m$ finite sums of quasi-homogeneous functions. We show that if the product Toeplitz operators $T_{\phi_m}\cdots T_{\phi_1}=0$ on Bergman space $\Omega$, then $\phi_j=0$ for some $j$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of Block Toeplitz Operators

Let D be the open unit disk in the complex plane and ∂D the unit circle. Let dσ(w) be the normalized Lebesgue measure on the unit circle. We denote by L(C) (L for n=1) the space of C-valued Lebesgue square integrable functions on the unit circle. The Hardy space H(C) (H for n=1) is the closed linear span of C-valued analytic polynomials. We observe that L(C) = L ⊗ C and H(C) = H ⊗ C, where ⊗ de...

متن کامل

Products of Toeplitz Operators on a Vector Valued Bergman Space

We give a necessary and a sufficient condition for the boundedness of the Toeplitz product TF TG∗ on the vector valued Bergman space L 2 a(C ), where F and G are matrix symbols with scalar valued Bergman space entries. The results generalize those in the scalar valued Bergman space case [4]. We also characterize boundedness and invertibility of Toeplitz products TF TG∗ in terms of the Berezin t...

متن کامل

Products of Toeplitz Operators on the Fock Space

Let f and g be functions, not identically zero, in the Fock space F 2 α of C. We show that the product TfTg of Toeplitz operators on F 2 α is bounded if and only if f(z) = e q(z) and g(z) = ce−q(z), where c is a nonzero constant and q is a linear polynomial.

متن کامل

Toeplitz Operators and Related Function Algebras on Certain Pseudoconvex Domains

Toeplitz operators are defined on pseudoconvex domains in C and their spectral properties are studied. In addition, the linear space HTM + C is discussed and is seen to be a closed algebra on a variety of domains.

متن کامل

Index Theory for Toeplitz Operators on Bounded Symmetric Domains

In this note we give an index theory for Toeplitz operators on the Hardy space of the Shilov boundary of an arbitrary bounded symmetric domain. Our results generalize earlier work of Gohberg-Krein and Venugopalkrishna [12] for domains of rank 1 and of Berger-Coburn-Koranyi [1] for domains of rank 2. Bounded symmetric domains (Cartan domains, classical or exceptional) are the natural higher-dime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian mathematical bulletin

سال: 2021

ISSN: ['1496-4287', '0008-4395']

DOI: https://doi.org/10.4153/s0008439521000187